О сайте

Данный сайт разработан в рамках Конкурса сайтов учащихся города Пензы. Здесь размещены статьи по ИНС. Эту тему я выбрал, потому что это один из моих самых любимых разделов информатики, а также потому что это одна из самых актуальных тем в мире IT, которая имеет большие перспективы и, естественно, успевшая обрасти сплетнями. На сайте создана фотогалерея, её я создал чисто для эстетики, практического применения она толком не имеет. Также есть страница обратной связи, если у вас возникнут вопросы.

Также вы можете зарегистрироваться на сайте, либо войти на уже созданный аккаунт. Для регистрации вам нужно ввести свой e-mail, придумать логин и ввести своё имя и фамилию. Система сама сгенерирует ваш пароль и отправит вам на электронную почту. Для авторизированных пользователей доступны чаты, их функционал достаточно примитивен, там не получится обмениваться файлами мультимедиа, там нет смайликов и стикеров, но чаты более чем рабочие и пригодны для обмена текстовыми сообщениями.

Если вы потеряли доступ к своему аккаунту, то вы можете его восстановить через свою электронную почту. Для этого в соответствующей форме просто введите e-mail, на который был создан аккаунт. Ваш пароль будет сброшен и вам будет прислан новый пароль на почту. На моё усмотрение я могу открывать некоторым пользователям возможность публиковать статьи на сайте. Если вы обнаружили какие-либо баги, уязвимости и прочее, прошу сообщать об это мне в разделе обратной связи.

Материал для статей главной страницы был взят в сайтов: Википедия, Хабр, NeuroPro. Что касается статей в каталоге, то источники данных указаны.

Каталог статей

Что такое нейросети?

Искусственная нейронная сеть (ИНС) — математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети У. Маккалока и У. Питтса. После разработки алгоритмов обучения получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

ИНС представляет собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие по отдельности простые процессоры вместе способны выполнять довольно сложные задачи.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искажённых данных.

Галерея

Краткая история

1943 — У. Маккалок и У. Питтс формализуют понятие нейронной сети в фундаментальной статье о логическом исчислении идей и нервной активности. В начале своего сотрудничества с Питтсом Н. Винер предлагает ему вакуумные лампы в качестве идеального на тот момент средства для реализации эквивалентов нейронных сетей.

1948 — опубликована книга Н. Винера о кибернетике. Основной идеей является представление сложных биологических процессов математическими моделями.

1949 — Д. Хебб предлагает первый алгоритм обучения.

В 1958 Ф. Розенблатт изобретает однослойный перцептрон и демонстрирует его способность решать задачи классификации. Перцептрон обрёл популярность — его используют для распознавания образов, прогнозирования погоды и т. д.; в то время казалось, что уже не за горами создание полноценного искусственного интеллекта. К моменту изобретения перцептрона завершилось расхождение теоретических работ Маккалока с т. н. «кибернетикой» Винера; Маккалок и его последователи вышли из состава «Кибернетического клуба».

В 1960 году Бернард Уидроу совместно со своим студентом Хоффом на основе дельта-правила (формулы Уидроу) разработали Адалин, который сразу начал использоваться для задач предсказания и адаптивного управления. Адалин был построен на базе созданных ими же (Уидроу — Хоффом) принципиально новых элементах — мемисторах. Сейчас Адалин (адаптивный сумматор) является стандартным элементом многих систем обработки сигналов.

В 1963 году в Институте проблем передачи информации АН СССР. А. П. Петровым проводится подробное исследование задач «трудных» для перцептрона. Эта пионерская работа в области моделирования ИНС в СССР послужила отправной точкой для комплекса идей М. М. Бонгарда — как «сравнительно небольшой переделкой алгоритма (перцептрона) исправить его недостатки». Работы А. П. Петрова и М. М. Бонгарда весьма способствовали тому, что в СССР первая волна эйфории по поводу ИНС была сглажена.

В 1969 году М. Минский публикует формальное доказательство ограниченности перцептрона и показывает, что он неспособен решать некоторые задачи (проблема «чётности» и «один в блоке»), связанные с инвариантностью представлений. Интерес к нейронным сетям резко спадает.

В 1972 году Т. Кохонен и Дж. Андерсон независимо предлагают новый тип нейронных сетей, способных функционировать в качестве памяти.

В 1973 году Б. В. Хакимов предлагает нелинейную модель с синапсами на основе сплайнов и внедряет её для решения задач в медицине, геологии, экологии.

1974 — Пол Дж. Вербос и А. И. Галушкин одновременно изобретают алгоритм обратного распространения ошибки для обучения многослойных перцептронов. Изобретение не привлекло особого внимания.

1975 — Фукусима представляет когнитрон — самоорганизующуюся сеть, предназначенную для инвариантного распознавания образов, но это достигается только при помощи запоминания практически всех состояний образа.

1982 — после периода забвения, интерес к нейросетям вновь возрастает. Дж. Хопфилд показал, что нейронная сеть с обратными связями может представлять собой систему, минимизирующую энергию (так называемая сеть Хопфилда). Кохоненом представлены модели сети, обучающейся без учителя (нейронная сеть Кохонена), решающей задачи кластеризации, визуализации данных (самоорганизующаяся карта Кохонена) и другие задачи предварительного анализа данных.

1986 — Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно С. И. Барцевым и В. А. Охониным (Красноярская группа) переоткрыт и существенно развит метод обратного распространения ошибки. Начался взрыв интереса к обучаемым нейронным сетям.

2007 — Джеффри Хинтоном в университете Торонто созданы алгоритмы глубокого обучения многослойных нейронных сетей. Успех обусловлен тем, что Хинтон при обучении нижних слоев сети использовал ограниченную машину Больцмана (RBM — Restricted Boltzmann Machine). Глубокое обучение по Хинтону — это очень медленный процесс. Необходимо использовать много примеров распознаваемых образов (например, множество лиц людей на разных фонах). После обучения получается готовое быстро работающее приложение, способное решать конкретную задачу (например, осуществлять поиск лиц на изображении). Функция поиска лиц людей на сегодняшний день стала стандартной и встроена во все современные цифровые фотоаппараты. Технология глубокого обучения активно используется интернет-поисковиками при классификации картинок по содержащимся в них образам. Применяемые при распознавании искусственные нейронные сети могут иметь до 9 слоёв нейронов, их обучение ведётся на миллионах изображений с отыскиваемым образом.

Обратная связь

Практическое применение ИНС

Экономика и бизнес: прогнозирование временных рядов (курсов валют, цен на сырьё, спроса, объемов продаж,..), автоматический трейдинг (торговля на валютной, фондовой или товарной бирже), оценка рисков невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление переоцененных и недооцененных компаний, рейтингование, оптимизация товарных и денежных потоков, считывание и распознавание чеков и документов, безопасность транзакций по пластиковым картам.

Медицина и здравоохранение: постановка диагноза больному (диагностика заболеваний), обработка медицинских изображений, очистка показаний приборов от шумов, мониторинг состояния пациента, прогнозирование результатов применения разных методов лечения, анализ эффективности проведённого лечения.

Авионика: обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета, беспилотные летательные аппараты.

Связь: сжатие видеоинформации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.

Интернет: ассоциативный поиск информации, электронные секретари и автономные агенты в интернете, фильтрация и блокировка спама, автоматическая рубрикация сообщений из новостевых лент, адресные реклама и маркетинг для электронной торговли, распознавание captcha.

Автоматизация производства: оптимизация режимов производственного процесса, контроль качества продукции, мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций.

Робототехника: распознавание сцены, объектов и препятствий перед роботом, прокладка маршрута движения, управление манипуляторами, поддержание равновесия.

Безопасность, охранные системы: распознавание лиц; идентификация личности по отпечаткам пальцев, голосу, подписи или лицу; распознавание автомобильных номеров, мониторинг информационных потоков в компьютерной сети и обнаружение вторжений, обнаружение подделок, анализ данных с видеодатчиков и разнообразных сенсоров, анализ аэрокосмических снимков.

Ввод и обработка информации: распознавание рукописных текстов, отсканированных почтовых, платежных, финансовых и бухгалтерских документов; распознавание речевых команд, речевой ввод текста в компьютер.

Геологоразведка: анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.

Компьютерные и настольные игры: создание нейроигроков в шашки и шахматы (подтверждённые игрой с людьми рейтинги - на уровне мастеров и международных мастеров), выигрыш в Го у чемпионов Европы и мира, в среднем лучшее, чем у человека, прохождение почти полусотни старых классических игр с Атари (всякие там Понги, Пакманы,..).

Обилие приведенных выше областей применения нейронных сетей - не рекламный трюк. Просто нейросети - это гибкий и мощный набор инструментов решения разнообразных задач обработки и анализа данных.